Skip to main content

Iteration method or successive approximation method.

 Iteration method

To find the real root of an equation f (x)=0 ...(1)
Which can be expressed in the form x=๐œ™(x) ......(2)
First we find an initial approximate value xโ‚€ for equation (1). The better approximation xโ‚ for the root is obtained by replacing x by xโ‚€  in R.H.S of equation (2) i.e xโ‚ = ๐œ™(xโ‚€)
A still better approximation xโ‚‚ for the root is obtained by putting x=xโ‚ in the R.H.S of equation (2). Thus xโ‚‚ = ๐œ™(xโ‚).
This procedure is continued and we get
xโ‚ƒ =  ๐œ™(xโ‚‚)
xโ‚„ =  ๐œ™(xโ‚ƒ)
.................
xโ‚™ =  ๐œ™(xโ‚™โ‚‹โ‚)
If the sequence xโ‚€,xโ‚,xโ‚‚,.......xโ‚™ of approximate roots converges to a limit ๐›‚, then ๐›‚ is taken as the root of the equation f(x)=0.
Remarks
The sufficient condition for convergence of iterations:
1) If I is the interval in which the root  ๐›‚ of the equation x=๐œ™(x) lies, then |๐œ™'(x)|< 1 for all x in the interval I.
2) The initial approximation xโ‚€ for the root lies in I.
Example: Find the real root of the equation xยณ+xยฒ-100=0, by iteration method.
Solution. Given f(x) = xยณ+xยฒ-100 = 0
f(1) = -98
f(2) = -88
f(3) = -64
f(4) = 64+16-100 = -20 (-ve)
f(5) = 125+25-100 = 50 (+ve)
f(4) and f(5) are of opposite sign.
So the root of equation lie between 4 and 5.
The given equation can be written as,
xยฒ(x+1) = 100
or x = 10/โˆš(x+1)
or x = ๐œ™(x), where ๐œ™(x) = 10/โˆš(x+1)
Therefore ๐œ™'(x) = 10ร—(-1/2)ร— 1/(x+1)ยณโ„ ยฒ = -5/(x+1)ยณโ„ ยฒ
or  |๐œ™'(x)| = |-5/(x+1)ยณโ„ ยฒ| < 1 in the interval (4,5).
So, the iteration method can be applied.
Taking xโ‚€ = 4.2,  then approximations are
xโ‚ = ๐œ™(xโ‚€) = 10/โˆš(4.2+1) = 4.3852

xโ‚‚ = ๐œ™(xโ‚) = 10/โˆš (4.3852+1) = 4.3092

xโ‚ƒ = ๐œ™(xโ‚‚) = 10/โˆš (4.3092+1) = 4.33995

xโ‚„ = ๐œ™(xโ‚ƒ) = 10/โˆš (4.33995+1) = 4.32744

xโ‚… = ๐œ™(xโ‚„) = 10/โˆš (4.32744+1) = 4.33252

xโ‚†= ๐œ™(xโ‚…) = 10/โˆš (4.33252+1) = 4.33045

xโ‚‡ = ๐œ™(xโ‚†) = 10/โˆš (4.33045+1) = 4.33129

xโ‚ˆ= ๐œ™(xโ‚‡) = 10/โˆš (4.33129+1) = 4.33095

xโ‚‰ = ๐œ™(xโ‚ˆ) = 10/โˆš (4.33095+1) = 4.33109

xโ‚โ‚€ = ๐œ™(xโ‚‰) = 10/โˆš (4.33109+1) = 4.33103

Since xโ‚‰ = xโ‚โ‚€ = 4.3310 correct up to four decimal places.
Therefore, root  is x = 4.3310 Ans.

Comments

Popular posts from this blog

Questions (Forward difference operator, Backward difference operator and Shifting operator)

Questions Example: Given that yโ‚…=4, yโ‚†=3, yโ‚‡=4, yโ‚ˆ=10, yโ‚‰=24, find the value of โˆ†โดyโ‚…: (i) By using the difference table and (ii) Without using the difference table. Solution: (i) Forward difference table. From the difference table โˆ†โดyโ‚…=0. Ans. (ii) We have โˆ†โดyโ‚…= (E-1)โดyโ‚… [โˆต โˆ†=E-1]                               = (Eโด-4Eยณ+6Eยฒ-4E+1)yโ‚…                               = Eโดyโ‚…-4Eยณyโ‚…+6Eยฒyโ‚…-4Eyโ‚…+1yโ‚…                               = yโ‚‰ -4yโ‚ˆ+6yโ‚‡-4yโ‚†+yโ‚… [Eโฟyโ‚“=yโ‚“โ‚Šโ‚™]                               = 24-4ร—10+6ร—4-4ร—3+4                               = 24-40-24-12+4 =0Ans. Example: Given x:  1     2     3...

Gauss's central difference formula for equal intervals.

 Gauss's central difference formula for equal intervals: We shall develop central difference formulae which are best suitable for interpolation near the middle of the tabulated set (table). x:             xโ‚‹โ‚‚  xโ‚‹โ‚  xโ‚€  xโ‚  xโ‚‚ y=f(x):    yโ‚‹โ‚‚  yโ‚‹โ‚  yโ‚€  yโ‚  yโ‚‚ Difference table. Gauss's forward interpolation formula for equal intervals: f(x) = yโ‚€+[u/1!]โˆ†yโ‚€+{[u(u-1)]/2!}โˆ†ยฒyโ‚‹โ‚+{[(u+1)(u)(u-1)]/3!}โˆ†ยณyโ‚‹โ‚+{[(u+1)u(u-1)(u-2)]/4!}โˆ†โดyโ‚‹โ‚‚ +......., Where u= (x-xโ‚€)/h Remark: This formula is applicable when u lies between 0 and 1 i.e (0<u<1). Example: Using Gauss's forward formula to evaluate yโ‚ƒโ‚€ given that yโ‚‚โ‚=18.4708, yโ‚‚โ‚…=17.8144, yโ‚‚โ‚‰=17.1070, yโ‚ƒโ‚ƒ=16.3432 and yโ‚ƒโ‚‡=15.5154. Solution. The difference table is Forward difference table. To find y=f(x) at x=30, i.e f(30): Taking xโ‚€ = 29, h=4, x=30, then u= (x-xโ‚€)/h = (30-29)/4 = 0.25 Using Gauss's forward difference formula f(x) = yโ‚€+[u/1!]โˆ†yโ‚€+{[u(u-1)]/2!}โˆ†ยฒyโ‚‹โ‚+...

Different operators

 Different operators We will study the following operators: 1) The Shifting Operator (E): Ef(x) = f(x+h) i.e Eyโ‚€= yโ‚ Eยฒf(x) = f(x+2h) i.e Eยฒyโ‚€ = yโ‚‚ Eโฟf(x) = f(x+nh) i.e Eโฟyโ‚€ = yโ‚™ Here n takes integral or fractional, positive or negative values. For example: Eโปยนf(x) = f(x-h) i.e Eโปยน yโ‚‚ = yโ‚ Eยน/ยฒf(x) = f[x+(1/2)h] i.e Eยน/ยฒ yโ‚ = yโ‚ƒโ‚—โ‚‚ Properties of Operator E 1) Operator E is distributive. 2) Operator E is commutative with respect to constant. 3) Operator E obeys laws of indices. 2) Forward difference operator (โˆ†): If xโ‚€, xโ‚,xโ‚‚,......., xโ‚™ are equally spaced with interval of differencing h and if y = f(x), then  โˆ†f(x) = f(x+h) - f(x) i.e โˆ†yแตข = yแตขโ‚Šโ‚ - yแตข for i = 0,1,2,3,..... n-1, The symbol โˆ† is called forward difference operator and  โˆ†yแตข is called first forward difference. Similarly, the second forward differences are โˆ†ยฒyแตข =โˆ†yแตขโ‚Šโ‚ - โˆ†yแตข For example: โˆ†ยฒyโ‚€ =โˆ†yโ‚ - โˆ†yโ‚€ = (yโ‚‚ - yโ‚)-(yโ‚-yโ‚€)                           ...