Skip to main content

Questions (Forward difference operator, Backward difference operator and Shifting operator)

Questions

Example: Given that y₅=4, y₆=3, y₇=4, y₈=10, y₉=24, find the value of ∆⁴y₅:
(i) By using the difference table and
(ii) Without using the difference table.
Solution: (i)
Forward difference table
Forward difference table.

From the difference table ∆⁴y₅=0. Ans.
(ii) We have ∆⁴y₅= (E-1)⁴y₅ [∵ ∆=E-1]
                              = (E⁴-4E³+6E²-4E+1)y₅
                              = E⁴y₅-4E³y₅+6E²y₅-4Ey₅+1y₅
                              = y₉ -4y₈+6y₇-4y₆+y₅ [Eⁿyₓ=yₓ₊ₙ]
                              = 24-4×10+6×4-4×3+4
                              = 24-40-24-12+4 =0Ans.

Example: Given
x:  1     2     3      4      5
y:  2     5    10    17    26
Find the value of ∇²y₅.
Solution. (i)
Backward difference table
Backward difference table.

From the difference table, we get ∇²y₅=2 Ans.
(ii) Without using the difference table to find ∇²y₅:
We have ∇²y₅ = (1-E⁻¹)²y₅  [∵ ∇=1-E⁻¹]
                         = (1+E⁻² -2E⁻¹)y₅
                         = y₅ + y₃ -2y₄ [E⁻ⁿyₓ=yₓ₋ₙ]
                         = 26+10-2×17 = 36-34 = 2 Ans.

Example: Find the first term of the series whose second and subsequent terms are 8,3,0,-1,0.
Solution. Let y₀=?,y₁=8,y₂=3,y₃=0,y₄=-1,y₅=0.
Here number of known data = 5 values
∴∆⁵y=0
=> (E-1)⁵y = 0
=> (E⁵-5E⁴+10E³-10E²+5E-1)y=0 ....(1)
(i) Putting y = y₀ in (1), we get
 (E⁵-5E⁴+10E³-10E²+5E-1)y₀ = 0
=> y₅-5y₄+10y₃-10y₂+5y₁-y₀ = 0 [Eⁿy₀ = y₀₊ₙ]
=> 0-5(-1)+10(0)-10(3)+5(8)- y₀ =0
=> 5-30+40 =  y₀
=>  y₀ = 15 i.e, first term= 15 Ans.

Example: Find the missing values in the following table:
x: 0       5       10       15      20      25
y: 6      10        -        17       -        31
Solution. Let y₀, y₁, y₂, y₃, y₄, y₅ be given data in which y₂ and  y₄ are missing:
∴ Number of known data = 4 values, so that ∆⁴y = 0
=> (E-1)⁴y = 0 [∵ ∆=E-1]
=>  (E⁴-4E³+6E²-4E+1)y = 0 ......(1)
(i) Putting y =  y₀ in (1), we get
(E⁴-4E³+6E²-4E+1)y₀ = 0
=> y₄-4y₃+6y₂-4y₁+y₀ = 0 [Eⁿy₀ = y₀₊ₙ]
=>  y₄ -4(17)+6y₂-4(10)+6 = 0
=> 6y₂+y₄= 102 .......(2)
(ii) Putting y =  y₁ in (1), we get
 (E⁴-4E³+6E²-4E+1)y₁ = 0
=> y₅-4y₄+6y₃-4y₂+y₁ = 0
=> 31-4y₄+6(17)-4y₂+10 = 0
=> 4y₄+4y₂ = 143 .....(3)
Solving (2) and (3)
4(y₄+y₂) = 143 [From (3)]
y₄+y₂ = 143/4 = 35.75
y₄ = 35.75 - y₂
Put the value of y₄ in (2), we get
6y₂+35.75 - y₂ = 102
6y₂ - y₂ = 102-35.75
5y₂ = 66.25
y₂= 66.25/5 = 13.25
And
y₄ = 35.75-13.25 = 22.5
i.e f(10)= 13.25 and f(20) = 22.5 Ans.

Comments

Popular posts from this blog

Gauss's central difference formula for equal intervals.

 Gauss's central difference formula for equal intervals: We shall develop central difference formulae which are best suitable for interpolation near the middle of the tabulated set (table). x:             x₋₂  x₋₁  x₀  x₁  x₂ y=f(x):    y₋₂  y₋₁  y₀  y₁  y₂ Difference table. Gauss's forward interpolation formula for equal intervals: f(x) = y₀+[u/1!]∆y₀+{[u(u-1)]/2!}∆²y₋₁+{[(u+1)(u)(u-1)]/3!}∆³y₋₁+{[(u+1)u(u-1)(u-2)]/4!}∆⁴y₋₂ +......., Where u= (x-x₀)/h Remark: This formula is applicable when u lies between 0 and 1 i.e (0<u<1). Example: Using Gauss's forward formula to evaluate y₃₀ given that y₂₁=18.4708, y₂₅=17.8144, y₂₉=17.1070, y₃₃=16.3432 and y₃₇=15.5154. Solution. The difference table is Forward difference table. To find y=f(x) at x=30, i.e f(30): Taking x₀ = 29, h=4, x=30, then u= (x-x₀)/h = (30-29)/4 = 0.25 Using Gauss's forward difference formula f(x) = y₀+[u/1!]∆y₀+{[u(u-1)]/2!}∆²y₋₁+{[(u+1)(u)(u-1)]/3!}∆³y₋₁+[(u+1)u(u-1)(u-2)/4!]∆⁴y₋₂ +...... => f(30)

Different operators

 Different operators We will study the following operators: 1) The Shifting Operator (E): Ef(x) = f(x+h) i.e Ey₀= y₁ E²f(x) = f(x+2h) i.e E²y₀ = y₂ Eⁿf(x) = f(x+nh) i.e Eⁿy₀ = yₙ Here n takes integral or fractional, positive or negative values. For example: E⁻¹f(x) = f(x-h) i.e E⁻¹ y₂ = y₁ E¹/²f(x) = f[x+(1/2)h] i.e E¹/² y₁ = y₃ₗ₂ Properties of Operator E 1) Operator E is distributive. 2) Operator E is commutative with respect to constant. 3) Operator E obeys laws of indices. 2) Forward difference operator (∆): If x₀, x₁,x₂,......., xₙ are equally spaced with interval of differencing h and if y = f(x), then  ∆f(x) = f(x+h) - f(x) i.e ∆yᵢ = yᵢ₊₁ - yᵢ for i = 0,1,2,3,..... n-1, The symbol ∆ is called forward difference operator and  ∆yᵢ is called first forward difference. Similarly, the second forward differences are ∆²yᵢ =∆yᵢ₊₁ - ∆yᵢ For example: ∆²y₀ =∆y₁ - ∆y₀ = (y₂ - y₁)-(y₁-y₀)                                   = y₂ -2y₁+y₀ Clearly any higher order differences can easily be expresse