Skip to main content

Kinds of number and significant digits.

 Kinds of Number 

There are two kinds of number, exact and approximate.

Approximate numbers

Approximate numbers are those that represent the number to a certain degree of accuracy.

Example; An approximate value of π is 3.1416 or if we wish to have a better approximation, it is 3.14169265. But we cannot write the exact value of π.

Exact numbers

The numbers which are accurately expressed are called exact numbers.

For example; 1,2,3…., 1/2,3/2,…. √2, π, e etc written in this manner.

Significant digits

The digits that are used to express a number are called significant digits or significant figures.

Example; The numbers 3.1416, 0.66667, 4.0687 contains five significant digits each. The number 0.00025 has however, only two significant digits viz 2 and 5 since zeroes serve only to fix the position of decimal points.

Similarly, the numbers 0.00145, 0.000145, 0.0000145 all have three significant digits.

Rule for finding significant digits

Rule 1: Every non zero digit is significant.

Example; 456 has 3 significant digits.

                 68.24 has 4 significant digits.

Rule 2: Zeroes between non zero digits are always significant.

Example; 5604 has 4 significant digits.

                 700.0879 has 7 significant digits.

Rule 3: Zeroes before non zero digits are not significant digits.

Example; 0.067 has two significant digits.

                 0.000008 has one significant digit.

                 098 has two significant digits.

Rule 4: Zeroes behind non-zero digits are sometimes significant.

Let us discuss it in detail.

A final zero or trailing zero in the decimal position only are significant.

Example; 0.00500 has three significant digits. 

0.03040 has four significant digits. 

Trailing zeroes in whole number are not significant.

Example; 200 has only one significant digit, while 25,000 has two significant digits.

Comments

Popular posts from this blog

Gauss's central difference formula for equal intervals.

 Gauss's central difference formula for equal intervals: We shall develop central difference formulae which are best suitable for interpolation near the middle of the tabulated set (table). x:             x₋₂  x₋₁  x₀  x₁  x₂ y=f(x):    y₋₂  y₋₁  y₀  y₁  y₂ Difference table. Gauss's forward interpolation formula for equal intervals: f(x) = y₀+[u/1!]∆y₀+{[u(u-1)]/2!}∆²y₋₁+{[(u+1)(u)(u-1)]/3!}∆³y₋₁+{[(u+1)u(u-1)(u-2)]/4!}∆⁴y₋₂ +......., Where u= (x-x₀)/h Remark: This formula is applicable when u lies between 0 and 1 i.e (0<u<1). Example: Using Gauss's forward formula to evaluate y₃₀ given that y₂₁=18.4708, y₂₅=17.8144, y₂₉=17.1070, y₃₃=16.3432 and y₃₇=15.5154. Solution. The difference table is Forward difference table. To find y=f(x) at x=30, i.e f(30): Taking x₀ = 29, h=4, x=30, then u= (x-x₀)/h = (30-29)/4 = 0.25 Using Gauss's forward difference formula f(x) = y₀+[u/1!]∆y₀+{[u(u-1)]/2!}∆²y₋₁+...

Different operators

 Different operators We will study the following operators: 1) The Shifting Operator (E): Ef(x) = f(x+h) i.e Ey₀= y₁ E²f(x) = f(x+2h) i.e E²y₀ = y₂ Eⁿf(x) = f(x+nh) i.e Eⁿy₀ = yₙ Here n takes integral or fractional, positive or negative values. For example: E⁻¹f(x) = f(x-h) i.e E⁻¹ y₂ = y₁ E¹/²f(x) = f[x+(1/2)h] i.e E¹/² y₁ = y₃ₗ₂ Properties of Operator E 1) Operator E is distributive. 2) Operator E is commutative with respect to constant. 3) Operator E obeys laws of indices. 2) Forward difference operator (∆): If x₀, x₁,x₂,......., xₙ are equally spaced with interval of differencing h and if y = f(x), then  ∆f(x) = f(x+h) - f(x) i.e ∆yᵢ = yᵢ₊₁ - yᵢ for i = 0,1,2,3,..... n-1, The symbol ∆ is called forward difference operator and  ∆yᵢ is called first forward difference. Similarly, the second forward differences are ∆²yᵢ =∆yᵢ₊₁ - ∆yᵢ For example: ∆²y₀ =∆y₁ - ∆y₀ = (y₂ - y₁)-(y₁-y₀)                           ...

Questions (Forward difference operator, Backward difference operator and Shifting operator)

Questions Example: Given that y₅=4, y₆=3, y₇=4, y₈=10, y₉=24, find the value of ∆⁴y₅: (i) By using the difference table and (ii) Without using the difference table. Solution: (i) Forward difference table. From the difference table ∆⁴y₅=0. Ans. (ii) We have ∆⁴y₅= (E-1)⁴y₅ [∵ ∆=E-1]                               = (E⁴-4E³+6E²-4E+1)y₅                               = E⁴y₅-4E³y₅+6E²y₅-4Ey₅+1y₅                               = y₉ -4y₈+6y₇-4y₆+y₅ [Eⁿyₓ=yₓ₊ₙ]                               = 24-4×10+6×4-4×3+4                               = 24-40-24-12+4 =0Ans. Example: Given x:  1     2     3...