Newton-Gregory forward interpolation formula:
Let u = (x-x₀)/h
then Newton-Gregory forward interpolation formula
f(x) = y₀ + u∆y₀ + [u(u-1)]/2!×∆²y₀+ .......+ {u(u-1)(u-2)[u-(n-1)]}/n!×∆ⁿy₀
Example: Find f(15) by using Newton-Gregory forward interpolation formula?
x: 10 20 30 40 50
y: 46 66 81 93 101
Solution. Here x₀=10, h = 10 and x= 15.
By using Newton-Gregory forward interpolation formula
f(x) = y₀ + u∆y₀ + [u(u-1)]/2!×∆²y₀+ .......+ {u(u-1)(u-2)[u-(n-1)]}/n!×∆ⁿy₀
f(15) = y₀ + 1/2∆y₀ + [1/2(1/2-1)]/2!×∆²y₀+ [1/2(1/2-1)(1/2-2)]/3!×∆³y₀ +[1/2(1/2-1)(1/2-2)(1/2-3)]/4!×∆⁴y₀
f(15) = 46 +(0.5)(20) + [(0.5)(-0.5)]/2×(-5) +[(0.5)(-0.5)(-1.5)]/6×(2) + [(0.5)(-0.5)(-1.5)(-2.5)]/24×(-3)
f(15) = 46+10+0.625+0.125+0.1172
f(15) = 56.8672 Ans
Newton-Gregory backward interpolation formula:
Let u = (x-xₙ)/h
then Newton-Gregory backward interpolation formula
f(x) = yₙ + u∇yₙ + [u(u+1)]/2!×∇²yₙ+ .......+ {u(u+1)(u+2)[u+(n-1)]}/n!×∇ⁿyₙ
Example: The value of annuities are given for the following ages. Find the value of annuity at the age of 28.5?
Age:. 25 26 27 28 29
Annuity: 16.2 15.9 15.6 15.3 15
Solution: Here x=28.5, xₙ= 29 and h= 1.
Using Newton-Gregory backward interpolation formula
f(x) = yₙ + u∇yₙ + [u(u+1)]/2!×∇²yₙ+ .......+ {u(u+1)(u+2)[u+(n-1)]}/n!×∇ⁿyₙ
f(28.5) = yₙ + (-0.5)∇yₙ + [-0.5(-0.5+1)]/2!×∇²yₙ
f(28.5) = 15+(-0.5)(-0.3)+0
f(28.5) = 15+0.15
f(28.5) = 15.15 Ans.
Comments
Post a Comment