Stirling's formula for equal interval:
Let u = (x-x₀)/h
Then Gauss's forward interpolation formula is
f(x) = y₀+u/1!∆y₀+{u(u-1)/2!}∆²y₋₁+{(u+1)(u)(u-1)/3!}∆³y₋₁+{(u+1)u(u-1)(u-2)/4!}∆⁴y₋₂ +....... .....(1)
and Guass backward interpolation formula is
f(x) = y₀+u/1!∆y₋₁+{u(u+1)/2!}∆²y₋₁+{(u+1)(u)(u-1)/3!}∆³y₋₂+{(u+2)(u+1)u(u-1)/4!}∆⁴y₋₂ +...... .......(2)
Taking the mean of (1) and (2), we get
f(x) = = y₀+u/1![(∆y₀+∆y₋₁)/2] + (u²/2!) ∆²y₋₁ + u(u-1)(u+1)/3![(∆³y₋₁+∆³y₋₂)/2] + [u²(u²-1)/4!]∆⁴y₋₂ +..... .....(3)
Which is called Stirling formula.
It is used when u lies between -1/4 and 1/4.
Example: Employ Stirling formula to compute y₁₂.₂ from the following table (yₓ = 1+log₁₀sinx):
x°: 10 11 12 13 14
10⁵yₓ: 23967 28060 31788 35209 38368
Solution: Rewriting
x°: 10 11 12 13 14
yₓ: .23967 .28060 .31788 .35209 .38368
Taking the origin at x₀=12°, h= 1, x=12.2,
then u = (x-x₀)/h = (12.2-12)/1 = 0.2,
Stirling formula is
f(x) = = y₀+u/1![(∆y₀+∆y₋₁)/2] + (u²/2!) ∆²y₋₁ + u(u-1)(u+1)/3![(∆³y₋₁+∆³y₋₂)/2] + [u²(u²-1)/4!]∆⁴y₋₂ +.....
Here y₀=0.31788, ∆y₀=0.03421, ∆y₋₁=0.03728, ∆²y₋₁= -0.00307, ∆³y₋₁= -0.00045, ∆³y₋₂=0.00058, ∆⁴y₋₂ = -0.00013
∴ y₁₂.₂ = 0.31788+(0.2)/1[ (.03421+.03728)/2] +(.2)²/2[-.00307] + {(.2)[(.2)²-1]/6} [(-.00045+.00058)/2] + {(.2)²[(.2)²-1]}/24(-0.00013)
= 0.31788+0.00715-0.00006-0.000002+0.0000002
=0.32497 Ans
Comments
Post a Comment