Newton-Gregory forward interpolation formula: Let u = (x-x₀)/h then Newton-Gregory forward interpolation formula f(x) = y₀ + u∆y₀ + [u(u-1)]/2!×∆²y₀+ .......+ {u(u-1)(u-2)[u-(n-1)]}/n!×∆ⁿy₀ Example: Find f(15) by using Newton-Gregory forward interpolation formula? x: 10 20 30 40 50 y: 46 66 81 93 101 Solution. Here x₀=10, h = 10 and x= 15. Thus u = (x-x₀)/h = (15-10)/10 = 5/10 = 1/2 Forward difference table. By using Newton-Gregory forward interpolation formula f(x) = y₀ + u∆y₀ + [u(u-1)]/2!×∆²y₀+ .......+ {u(u-1)(u-2)[u-(n-1)]}/n!×∆ⁿy₀ f(15) = y₀ + 1/2∆y₀ + [1/2(1/2-1)]/2!×∆²y₀+ [1/2(1/2-1)(1/2-2)]/3!×∆³y₀ +[1/2(1/2-1)(1/2-2)(1/2-3)]/4!×∆⁴y₀ f(15) = 46 +(0.5)(20) + [(0.5)(-0.5)]/2×(-5) +[(0.5)(-0.5)(-1.5)]/6×(2) + [(0.5)(-0.5)(-1.5)(-2.5)]/24×(-3) f(15) = 46...